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We perform a detailed numerical study of the evolution of a miscible fluid droplet in a time-dependent gap
Hele-Shaw cell. The development of the emerging fingering instabilities is systematically analyzed by intensive
and highly accurate numerical simulations. We focus on the influence of three relevant physical parameters on
the interface dynamics: the Péclet number Pe, the viscosity contrastA, and the Korteweg stress parameterd.
Consistently with conventional miscible Saffman-Taylor studies in constant-gap Hele-Shaw cells, our results
demonstrate that more vigorous fingering is observed at higher Pe and largerA. Concerning the specific role of
Pe andA, we deduce two general results: higher Péclet number favors branching around a nearly circular
region swhich leads to longer interfacial lengthsd; while larger viscosity contrast results in more significant
finger penetrationsswhich is quantitatively expressed by larger diameter of gyrationd. We have also verified
that the Korteweg stress parameterd does act as an effective interfacial tension: it stabilizes the miscible
interface, leading to fingering patterns that present a greater resemblance with the structures obtained in similar
immiscible situations. Finally, we have identified the development of a visually striking phenomenon in the
limit of high Pe, largeA, and relatively smalld: some outward fingers pinch, and subsequent droplet detach-
ment is observed. We show that such a droplet detachment process can be prevented by the action of stronger
interfacial stresses. This last finding provides additional evidence for the claim that the Korteweg stresses can
be treated as an ersatz interfacial tension in diffusing fluids.

DOI: 10.1103/PhysRevE.71.056304 PACS numberssd: 47.54.1r, 47.20.Ma, 47.11.1j, 64.75.1g

I. INTRODUCTION

Viscous fingering is one celebrated example of pattern
forming systems where the nonlinear development of an in-
stability can be studied in considerable detail. For this reason
the Saffman-Taylor instabilityf1g has attracted a lot of inter-
est during the last few decadesf2g. It arises when a less
viscous fluid pushes a more viscous one in the narrow gap
separating two flat, parallel glass platessHele-Shaw celld. As
a result of such hydrodynamic instability, a variety of pat-
terned structures may develop at the fluid-fluid interface. If
the flow occurs in rectilinear channelssrectangular geom-
etryd the less viscous fluid takes the shape of a long, smooth
bubble or “finger” f1g. On the other hand, branched and
much more intricate interfacial patterns are formed if the less
viscous fluid is injected through a hole located on the upper
plate, and flows radiallysradial geometryd f3g. Many theoret-
ical and experimental studies have been performed in both
geometries, leading to a good understanding of the basic
physical mechanisms related to finger shape selection in rect-
angular geometry, and to tip-splitting events in the radial
case.

Much of the research in this area has examined the flow in
flat, motionless, constant-gap spacing Hele-Shaw cells, in
which the fluids involved are relatively simple, usually im-
miscible and Newtonian. However, the quest for new mor-

phologies and richer dynamic behavior resulted in a number
of modifications of the classic Saffman-Taylor setup. Re-
searchers have introduced changes into the system in many
different ways:sid by modifying the shape of the cell, and
considering flow in wedge-shapedf4–8g and nonflat Hele-
Shaw cellsf9–13g; sii d by putting the cell into motion, and
rotating it around an axis perpendicular to the plane of the
flow f14–16g; siii d or even by studying the flow of more
complex liquids such as non-Newtonianf17–20g and mag-
netic f21,22g liquids or by investigating pattern evolution in
miscible fluidsf23–29g.

A particularly interesting variation of the traditional
Saffman-Taylor problem is the investigation of fingering in-
stabilities in Hele-Shaw cells presenting variable gap spacing
f30–34,36g. In such a “lifting” version of the problem, the
pressure gradient within the more viscous fluid is due to the
lifting of the upper plate, while the lower plate remains at
rest. Rectangular geometry flow in lifting cells has been
studied in Refs.f30–32g where the upper plate is lifted just
by one edge, making the gap both time and space dependent.
A somewhat simpler radial geometry situation has been ex-
amined in Refs.f33,34,36g, where the upper plate is lifted
uniformly, i.e., the plates remain parallel to each other during
the lifting process, so that the gap is a function of time, but
not of space. This defines the so-calledtime-dependent gap
Hele-Shaw cell. This uniform lifting makes the fluid-fluid
interface move inward, forming visually striking fingering
patterns. It is worth noting that fluid flow in lifting Hele-
Shaw cells is not only intrinsically interesting, but also of
significant importance to adhesion related problemsf37–43g.
In such types of problems the force and the energy required
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to separate two adhesively bonded surfaces can be quite suc-
cessfully evaluated through a Hele-Shaw approachsDarcy’s
law formulationd.

Due to the practical and academic relevance of the lifting
cell problem it is of interest to study and understand the
emerging interfacial patterns under many different physical
circumstances. To date, the totality of the lifting cell studies
in the literaturef30–34,36g consider flow ofimmiscibleflu-
ids, which inherently assumes the existence of a surface ten-
sion at the fluid-fluid interface. Conversely, in this paper we
analyze the situation in which the fluids aremiscible, and
consequently present negligible interfacial tension. The ques-
tion arises as to whether miscibility gives rise to any unusual
interfacial shapes and behaviors. To address issues like this
we perform intensive numerical simulations of the system
and investigate how miscible displacements in a time-
dependent gap Hele-Shaw cell may lead to interesting dy-
namical and morphological effects, particularly during ad-
vanced nonlinear stages of pattern evolution.

The layout of the rest of the paper is as follows. Section II
formulates our theoretical approach and presents the govern-
ing equations of the time-dependent gap Hele-Shaw system
with miscible fluids. Section III discusses the influence of
key physical parameters on the development of miscible fin-
gering in an originally circular droplet surrounded by a mis-
cible, less viscous fluid. First, in Sec. III A we analyze the
combined role played by diffusive effects and lifting rates
sexpressed by the dimensionless Péclet number Ped, viscosity
contrastA sdimensionless viscosity difference between the
fluidsd, and Korteweg stress parameterd seffective surface
tension for miscible flowf44–48gd in determining interfacial
behavior. By examining the various simulated concentration
images for the patterns important miscible interfacial fea-
tures such as droplet recircularization and finger competition
are identified and characterized. In the limit of high Pe, large
A, and smalld a very interesting phenomenon is identified:
the fingers pinch off and detached satellite droplets are
formed. A tentative parallel of our results including Ko-
rteweg stresses and the immiscible case is also discussed.
Subsequently, in Sec. III B a more quantitative analysis of
the patterns is provided, with the help of two important quan-
tities: interfacial mixing length and diameter of gyration. Our
main conclusions are summarized in Sec. IV.

II. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

The geometry of the lifting Hele-Shaw cell problem is
schematically sketched in Fig. 1. We consider the miscible

displacement and the development of interfacial instabilities
when an initially circular fluid droplet of viscosityh1 is sur-
rounded by a less viscous fluid of viscosityh2 in a time-
dependent gap Hele-Shaw cell. We define our two-
dimensional coordinate system in such a way that its origin
is located at the center of the droplet. In this confined envi-
ronment the flow takes place between two narrowly spaced
flat plates, where the upper plate is lifted at a specified rate,
and the lower plate is held fixed. During the lifting process
the pressure gradient causes an inward viscous flow in the
plane of the cell, leading to the formation of interfacial de-
formations. The initial plate spacing is represented byh0, and
at a given timet the plate-plate distance is denoted byh
=hstd. The radius of the initially circular droplet is denoted
by Rdst=0d=R0. As in Refs.f33,41g we assume an exponen-
tially increasing gap widthhstd=h0expsatd, wherea is a con-
trol parameter. This is precisely the ideal plate separation
profile used in related adhesion probe-tack testsf41g, since it
provides a more uniform kinematics and nearly constant
strain rate.

The dynamics of the incompressible miscible interface
differs from the immiscible situation in two main aspects,
i.e., the Korteweg stressesf44–48g and the velocity diver-
gencef45–49g. Korteweg stresses arise as a result of concen-
tration gradients at the interface between two miscible fluids,
and may lead to dynamic surface-tension-like effects within
areas of steep concentration gradients. The divergence effects
are caused by the density variation of mixing. A recent study
of miscible displacements in cylindrical tubesf49g has con-
firmed that such velocity divergence effects are insignificant;
therefore we neglect them in the present simulations. Bouy-
ancy effects are neglected as well.

Here we point out some important requirements and limi-
tations of the Darcy’s law formulation we employed in this
work. First, as is common in Hele-Shaw systemsf2,33g, we
consider that during the lifting process the system remains of
large aspect ratio: the gap widthh is always far smaller than
a characteristic length scale in the plane of the cell, which we
take as the droplet radiusRd, so thatRd/h@1. This means
that quantitative accuracy should be expected for timest
! s2/3adlnsR0/h0d. A second important requirement refers to
the fact that the velocity profile across the gap needs to re-
main parabolicf51,52g. Then we assume that the Taylor dis-
persionf50g is significant, so that the concentration gradients
are not high across the gap. Also, recent results in density-
driven flowsf53–56g show that for high Rayleigh numbers,
the Hele-Shaw equations might not be able to provide a com-
pletely accurate representation of the flow field, due to the
extremely fine structures which are comparable to the gap
width. Under these situations, the full three-dimensional
Stokes equations or Brinkman model seem to be more ap-
propriate to capture the instability features, such as the domi-
nant wavelength.

Despite the restrictions described in the previous para-
graph, we emphasize that the Darcy’s law representation of
the lifting cell problem with immiscible fluids has been used
in numerous theoretical and experimental studies
f31–34,36–43g, always providing a pretty good description
of both fingering dynamics and adhesion properties. This is
nicely illustrated by the striking similarity between the nu-

FIG. 1. Schematic representation of the time-dependent gap
Hele-Shaw cell with miscible fluids.
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merical results of Shelleyet al. f33g and the experimental
investigations performed by Derks and co-workersf38g. The
comparison between the results obtained in Refs.f33,38g
demonstrates that the Darcy’s law model accounts for the
initial, intermediate, and fully nonlinear evolution of the ob-
served fingering patterns. The evident success of the Darcy’s
law in describing the immiscible system motivated us to use
this theoretical tool to study its miscible counterpart. In spite
of the fact that to date there areno experimental studies with
miscible fluids in lifting Hele-Shaw cells, our current Dar-
cy’s law approach seems to be quite promising as our nu-
merical simulations compare quite well with the patterns
found in Refs.f33,38g, when the effects of Kortweg stress
seffective surface tensiond are introduced. Hopefully, this
work will stimulate lifting Hele-Shaw experimental investi-
gations with miscible fluids which would allow a check of
our theoretical predictions.

Concerning some practical aspects of possible experi-
ments with miscible fluids in lifting Hele-Shaw cells, one
obvious setup would be to immerse the whole apparatus,
already containing a confined droplet of the more viscous
fluid surrounded with the less viscous one, in a recipient
containing the less viscous fluid. Of course, this may repre-
sent an experimental challenge because the fluids may get
mixed up before the lifting starts, or undesirable air bubbles
can be trapped between the plates. Regarding the values of

the physical parameters which could be used in such experi-
ments, we point out that the values of the relevant dimen-
sionless parameters Pe,A, andd sdefined belowd used in our
simulations are consistent with the typical values of physical
parameters used in equivalentsand existingd experiments
with immiscible fluidsf38–41g and with well known values
of the diffusion coefficientf47,57g. For example, with a typi-
cal initial lifting velocity v=ah0=Os10−7d m/s, initial gap
width h0=Os10−4d m, and initial droplet radius R0

=Os10−2d m as given in Ref.f38g, the practical value of Pe
=Os103d–Os104d is obtained, which is in the range we simu-
lated. However, this happens under constant lifting speed
conditionsf38g. Another possible set of experimental data is
given in Ref. f35g: they had applied a constant pressure,
which also leads to an exponential speed profile. Within such
circumstances a lifting speed correlationfEq. s2d of Ref.
f35gg is obtained which leads to a lifting coefficienta=0.53
in their experiments, resulting in Pe=Os105d–Os106d, which
is higher than the typical values of the Péclet number Pe we
had used in our simulations. We mention that such a high
Péclet number case is beyond the range of validity of our
current numerical code. Finally, note that the thin film for-
mulation we adopt imposes restrictions on the value of the
lifting speed. A smaller lifting speed generally ensures the
better applicability and accuracy of the thin film approach.
Based on the experimental data of Refs.f35,38g we can es-

FIG. 2. Concentration images for Pe=4.03103, A=0.762, andd=0 at t= sad1, sbd2, scd3, andsdd5.
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timate that, at least for a lifting coefficienta,0.53 fPe
=Os105d–Os106dg for constant pressure, or for constant
speedv,8.73310−7 m/s fPe=Os104dg, the situations still
fit quite well with the predictions of our present numerical
Hele-Shaw formulation.

The dynamical evolution in a time-dependent gap Hele-
Shaw cell is governed by the following equations
f25,27,32,33,47g:

= ·u = −
ḣstd
hstd

, s1d

=sp + Qd = −
12h

h2 u + = · fd̂s=cds=cdTg, s2d

]c

]t
+ u · = c = D¹2c. s3d

Equations1d expresses a modified incompressibility condi-
tion which accounts for the lifting of the upper platef32,33g.
The gap averaged velocity isu, while the overdot denotes
total time derivative. A generalized Darcy’s law is expressed
by Eq. s2d wherep is the hydrodynamic pressure, andQ is
the additional pressure due to the Korteweg stressesf25,47g.
The concentration of the fluid 1 is represented byc, andd̂ is

the Korteweg stress coefficient. The superscriptT denotes a
transpose. The concentration equation is given by Eq.s3d,
whereD is the constant diffusion coefficient.

The viscosity variations of the mixture are assumed as
f23,24g

hscd = h1expfRs1 − cdg, s4d

whereR=lnsh2/h1d is a viscosity parameter. In order to ren-
der the governing equationss1d–s4d dimensionless, the radius
of the initial circular dropletR0 is used as the characteristic
length scale. We further scale the viscosity withh1 and time
with 1/a. In conjunction with the characteristic velocityaR0
and pressures12h1aR0

2d /h0
2, dimensionless governing equa-

tions are obtained:

= ·u = − 1, s5d

=sp + Qd = −
h

e2tu + = · fds=cds=cdTg, s6d

]c

]t
+ u · = c =

1

Pe
¹2c, s7d

FIG. 3. Concentration images for Pe=1.23104, A=0.762, andd=0 at t= sad1, sbd2, scd3, andsdd5.
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hscd = expfRs1 − cdg. s8d

The dimensionless parameters, such as the Péclet number Pe,
the viscosity contrastsor the Atwood viscosity ratiod A, and
the Korteweg constantd are defined as

Pe =
aR0

2

D
, A =

1 − eR

1 + eR, d =
d̂h0

2

12h1aR0
4 .

The velocity is split into a divergence-free componentu f
which is the velocity of the constant gap spacing case, and an
axisymmetric divergent radial velocityud=udsrd caused by
the gap variation, so that

u = u f + ud, s9d

= ·u f = 0, s10d

= ·ud = − 1. s11d

The divergent radial velocity is obtained directly from Eq.
s11d as ud=−r /2, which is a potential field. On the other
hand, by rewriting the momentum equations2d in the stream
function f and vorticity v formulation, the divergence-free
componentu f can be obtained by solving the equations
f24,29,47g

uf =
]f

]y
, v f = −

]f

]x
, s12d

¹2f = − v, s13d

v = − RFu
]c

]y
− v

]c

]x
G −

e2td

h
F ]c

]x
S ]3c

]x2 ] y
+

]3c

]y3D
−

]c

]y
S ]3c

]x ] y2 +
]3c

]x3DG . s14d

As to the boundary conditions, the nonvanishing divergence-
free stream function given by Eq.s14d is induced by concen-
tration gradients. Consequently, for regions located outside
the dropletswhere no concentration gradient is presentd, the
stream function is zero. Therefore, the choice of computa-
tional domain is arbitrary as long as the domain contains the
whole droplet. Of course, the divergent radial component is
still present within the entire computational domain. In this
study, we choose the boundaries to vary between +4/3 and
−4/3 in bothx andy directions. Under such circumstances,
the boundary conditions are prescribed as follows

f = 0,
]c

]x
= 0 for x = ±

4

3
, s15d

f = 0,
]c

]y
= 0 for y = ±

4

3
. s16d

In order to reproduce the very fine structures of the fingers
successfully, a highly accurate spectral method is applied. As
a result, the actual boundary conditions applied in the nu-
merical codes atx= ±4/3 aremodified as]f /]x=0. Under
the present situation where no concentration gradient is gen-

erated on these boundaries before the calculations terminate,
the above conditions automatically lead tof=0. The initial
conditions assume a circular droplet shape bounded by a
steep concentration gradient in the form of an error function.
To break the unphysical artificial symmetry, a small magni-
tude of random noise is applied to the positions of 0.5 con-
centration. To solve the stream function Eq.s13d by a pseu-
dospectral method, a Galerkin-type discretization using a
cosine expansion is employed in the streamwise direction on
both v and f. In the normal direction, discretization is ac-
complished by sixth order compact finite differences. The
vorticity equations14d is evaluated by sixth order compact
finite difference schemes. A fully explicit third order Runge-
Kutta procedure on time and spatial sixth order compact fi-
nite difference schemes are employed to solve the concentra-
tion Eq. s7d. The set of equations is then solved and
advanced in time. The numerical code is similar to the one
used for earlier investigations of miscible flow in other ge-
ometriesf24–27g, and is quantitatively validated by compar-
ing the growth rates with the values obtained from the linear
stability theory in a plane front. More details on the imple-
mentation and quantitative validation of these schemes are
provided by Refs.f27–29g.

FIG. 4. Concentration images for Pe=2.03103, A=0.762, and
d=0 at t= sad1, sbd2, andscd3.
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III. RESULTS AND DISCUSSION

This section is divided in two parts. Section III A presents
the actual interfacial patterns obtained by our numerical
study, and examines the combined influence of diffusive, vis-
cous, and Korteweg stress effects on their evolution and
shape. Section III B provides a more quantitative account of
the morphological features shown in Sec. III A, where inter-
esting phenomena related to recircularization of the more
viscous droplet and finger competition behavior have been
initially discussed.

A. Influence of diffusive, viscous, and Korteweg stress effects

The beautiful interfacial patterns obtained forimmiscible
displacement in lifting Hele-Shaw cells have been investi-
gated by both experimentsf30,31,34,38–41g and numerical
simulationsf33g. In these studies it is found that during the
lifting process the initially circular droplet of the fluid 1 goes
through basically three different stages.sid The first one is
characterized by the rapid ramification of the interface via
the penetration of multiple fingers of the outer, less viscous
fluid 2 into fluid 1. These inward fingers become progres-
sively thicker and acquire rounder shapes as time progresses.
sii d Following the initial period of intense instability and
ramification, a second stage arises in which the number of
fingered structures diminishes, indicating that the instability

cannot be sustained indefinitely.siii d In a final stage, one
particularly interesting phenomenon takes place, making the
droplet shrink and recircularize. The numerical simulations
for the immiscible casef33g also show that increasingly
smaller values of surface tension lead to stronger interface
ramification, resulting in a delayed recircularization process.
We point out that the accurate numerical description of the
zero surface tension flow in the immiscible case is a chal-
lenging problem: when surface tension vanishes the interface
begins to sharpen, and the spatial Fourier spectrum broadens
rapidly, quickly exhausting the available resolution.

Interestingly, the lifting Hele-Shaw cell investigations
performed so far focus solely on theimmisciblecase, and in
addition, just consider thehigh viscosity contrast limitsA
=1d. Therefore, the interplay between viscous and diffusive
effects for similar flows involvingmiscible fluids is still
largely unexplored in the present literature. One noteworthy
point about miscible flows is the fact that interfacial tension
is actually negligible. Due to the smooth character of the
diffusive effects involved, the study of miscible interfaces
may provide a nice and easier way to access complicated
immiscible flow circumstances in which surface tension van-
ishesf33g. Suggestive interfacial behaviors like droplet recir-
cularization and finger competition can be revisited and fur-
ther analyzed in the miscible case. The occurrence of some
other important interfacial features, not yet fully examined in
the immiscible time-dependent gap situation, such as finger

FIG. 5. Concentration images for Pe=4.03103, A=0.905, andd=0 at t= sad1, sbd2, scd3, andsdd5.

CHEN, CHEN, AND MIRANDA PHYSICAL REVIEW E71, 056304s2005d

056304-6



pinch-off and droplet detachment could be studied as well.
Moreover, it is also worth investigating the possibility of
reintroducing surface-tension-like effects into the miscible
case, through the action of Korteweg stress. So a thorough
investigation of the relationship between miscibility and the
fluid-fluid interface dynamics still needs to be addressed in
lifting Hele-Shaw cells. In this work we begin such investi-
gations, focusing on the problem involving Newtonian, non-
magnetic miscible fluids.

We begin our numerical investigation performing a sys-
tematic study of the concentration images obtained for dif-
ferent values of the relevant control parameters, the Péclet
number Pe, viscosity contrastA, and Korteweg stressd. Fig-
ure 2 depicts the sequential images of concentration for a
representative case with Pe=4.03103, A=0.762, but assum-
ing absence of Korteweg stress, so thatd=0. At the earlier
staget=1, one can observe the appearance of peculiar fin-
gering instabilities at the fluid-fluid border mostly due to
viscous effectsshere the inner fluid 1 is about 7.4 times more
viscous than the surrounding fluid 2d. One striking morpho-
logical difference with the immiscible case can be already
detected at this early stage, which presents the development
of a large number of verythin fingers. As time progresses the
vigorous fingering process keeps evolving up tot=2, reveal-
ing interesting nonlinear behaviors, such as finger merging
and a sort of tip splitting of the outgoing more viscous fin-
gers. However, we notice that the shrinking interface at later

time period limits the further growth of the fingers, so that
the instability is found less significant aftert=3. Actually,
only a few dispersed fingers are left att=5. Note that only at
this very late stage does the fingering pattern begin to show
some tendency toward recircularization. This last finding
seems to indicate that miscibility would tend to delay or
inhibit the recircularization process. This is consistent with
the numerical observations of Ref.f33g for the immiscible
case which pointed to less tendency to droplet recirculariza-
tion for lower values of surface tension.

In Fig. 3 we keep the same physical parameters used in
Fig. 2, but now increase the value of the Péclet number to
Pe=1.23104, meaning weaker diffusive effects or faster lift-
ing rates. At this point, we stress the fact that the initial
conditions are exactly the same for all patterns simulated in
this work. In Fig. 3 we observe the enhancement of fingering
instabilities at early stagesst=1d, with the formation of even
higher number of fingers, and the development of more vig-
orous branching events att=2, 3. Note that even att=5 some
well defined fingered structures still survive, so that stabili-
zation and recircularization are not yet fully achieved. For
this higher value of Pe the patterns obtained are markedly
different from the ones typically found in the corresponding
immiscible situationf33,38g. Here the interface is much
more ramified, presenting outgoing fingers which develop a
peculiar forklike or tridentlike shape. On the other hand, if
the Péclet number is lowered to Pe=2.03103 as shown in

FIG. 6. Concentration images for Pe=4.03103, A=0.762, andd=−5.0310−7 at t= sad1, sbd2, scd3, andsdd5.
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Fig. 4, one can clearly see that the instabilities are signifi-
cantly dampened, resulting in a much smoother shrinking
interface. In this respect, we have verified that for the situa-
tion in which Pe=103 the contracting droplet remains nearly
circular during the whole lifting process.

Now we turn to the investigation of the role played by the
viscosity contrastA. As in Fig. 2, we keep the Péclet number
fixed at Pe=4.03103 and still setd=0, but now allow varia-
tions in the viscosity contrast. In agreement with the conven-
tional viscous fingering problemf1–3g, less fingering is de-
tected at lower values ofA. At a lower viscosity contrastA
=0.462, the shrinking interface is further stabilized, and no
apparent instability is induced. Also in line with the usual
Saffman-Taylor problemf1–3g, Fig. 5 illustrates that more
vigorous fingering is triggered at a higher viscosity contrast
A=0.905. One curious point is the rising of curly side-
branching structures in some fingersst=2d. It is also inter-
esting to notice the fundamental differences regarding the
enhanced fingering processes induced by Péclet numbersFig.
3d, and viscosity contrastsFig. 5d. In Fig. 5 it is clear that
initially st=1d the fingers are a bit thicker, and appear in
smaller number in comparison to the structures obtained in
Fig. 3. In addition, note that for later timesst=3d, the pat-
terns formed in Fig. 5 present outgrowing fingers which are
significant longer than the ones obtained in Fig. 3.

The fingering instabilities at higher Péclet numberssFig.
3d, which provide stronger concentration gradient locally, are
mostly produced by the inward motion of the less viscous
fingers penetrating the more viscous fluid. This motion oc-
curs in such a way that the relative lengths of the less viscous
fingers do not differ very much, making their tips to define
an approximately circular internal region in the more viscous
fluid, as typically shown in Fig. 3. In other words, for higher
Pe the length variability among the inward fingers is not too
pronounced, which characterizes patterns with a relatively
well preserved internal circular region of the more viscous
fluid. In contrast, as illustrated in Fig. 5, a higher viscosity
contrast leads to a more significant and less uniform penetra-
tion of the less viscous inward fingers, originating structures
that compete more strongly with each other, resulting in an
array of incoming fingers presenting a variety of lengths.
Consequently, for higherA the internal region of the more
viscous fluid is not typically circular in shape. A similar type
of behavior, at high viscosity contrast, is also observed for
miscible flow in Hele-Shaw cells presenting different geom-
etriesf24g. More quantitative descriptions regarding the dif-
ferent mechanisms of pattern evolution and finger competi-
tion for higher values of Pe orA are provided in Sec. III B.

We close this section by discussing the role played by
Korteweg stressesf44–48g for confined flow in a time-
dependent gap Hele-Shaw cell. Both numericalf25,27g and

FIG. 7. Concentration images for Pe=4.03103, A=0.905, andd=−5.0310−7 at t= sad1, sbd2, scd3, andsdd5.
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analytical investigationsf47g of miscible flow systems in-
cluding Korteweg stresses have found interesting morpho-
logical similarities between the observed miscible patterns
and the structures obtained in related immiscible flows. This
resemblance suggests the possibility of seeing Korteweg
stresses as a sort of effective surface tension for the miscible
case. As pointed out in Ref.f47g, a meaningful interpretation
of Korteweg stresses as an effective surface tension in Hele-
Shaw flows requires the use ofnegativevalues of Korteweg
stress constantd, otherwise the problem would be ill posed.

The action of the Korteweg stresses on the pattern evolu-
tion is initially shown in Fig. 6 for Pe=4.03103, A=0.762,
andd=−5.0310−7. The pattern obtained in Fig. 6 reveals the
stabilizing role played by the Korteweg stresses, in the sense
that interfacial instabilities are significantly restrained. The
latter can be clearly verified by comparing the patterns
shown in Fig. 6sfor dÞ0d with those obtained in Fig. 2
which used the same physical parameters, but assumedd
=0. In particular, we point out the pattern shown in Fig. 6sbd
st=2d is very similar to the ones commonly obtained in the
corresponding immiscible situationf33,38g. We have also
verified that a fully stable circular front is recovered for
stronger Korteweg constant atd=−10−5. These results are in
accordance with the findings of Refs.f25,27g, which reported
Korteweg-stress-induced stabilization for Hele-Shaw cells
with different flow geometries.

Figure 7 illustrates pattern evolution for higher values of
the viscosity contrast: nowA=0.905, d=−5.0310−7, and

Pe=4.03103. In contrast to the similar case depicted in Fig.
5 in which Korteweg stresses are neglected, now we see that
the initial patternsst=1d exhibit a smaller number of inward
fingers, which are thicker and present much more rounded
tips. Actually, the most noteworthy fact is the resemblance of
these initial miscible patterns with the ones normally ob-
tained for immiscible flow in lifting Hele-Shaw cellsf33,38g.
Again, this result for time-varying gap Hele-Shaw cells rein-
forces the claim that Korteweg stresses do act like an effec-
tive surface tension for miscible flowf25,27g. Of course, the
shape similarity between these miscible and immiscible pat-
terns also provides an indirect validation of our current mis-
cible simulations. Finally, as time advances in Fig. 7sd
Þ0d we see that, despite the large value ofA, the resulting
interfacial patterns are not as intricate as those obtained in
Fig. 5 sd=0d, a stabilizing effect obviously induced by
Korteweg stresses.

Explorations of the coupling effects for even higher Pe
=1.23104 at A=0.905 andd=−5.0310−7 are also con-
ducted, as shown in Fig. 8. The increase in the value of the
Péclet number provides stronger concentration gradients that
enhance finger penetration. This finding is easily verified by
comparing Figs. 7 and 8 att=1. As a result, extremely slim
fingers are resulted by current high Pe andA. This strong
finger penetration process, associated with transverse diffu-
sion, leads to the striking phenomenon of finger pinch-off,
and eventually to the detachment of droplets at the finger

FIG. 8. Concentration images for Pe=1.23104, A=0.905, andd=−5.0310−7 at t= sad1, sbd2, scd3, andsdd5.
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tips. Numerous tiny droplets are formed throughout the lift-
ing process aftert=1. We point out that finger pinch-off and
droplet emission have also been recently detected in experi-
ments forimmiscibleflow in rotatingHele-Shaw cellsf16g in
the limit of low viscosity contrast andlow surface tension.

It is interesting to notice that the droplet detachment phe-
nomena we detected in our current miscible case for rela-
tively large values of Pe and A has not been reported in
similar immiscible flows in lifting Hele-Shaw cellsf33,38g.
This fact can be attributed to the different mechanisms of
droplet detachment involved in immiscible and miscible
flows. While the detachment in immiscible situations indi-
cates the occurrence of interfacial singularities, it occurs
much more smoothly in miscible cases due to diffusive ef-
fects. So, despite going through several “near-pinching” situ-
ations for immiscible flow in time-dependent gap cellsf33g,
the simulated patterns for nonzero surface tension andA=1
are eventually reduced to a final circle, without exhibiting
any droplet detachment at all. These numerical results for the
immiscible casef33g agree with adhesion experiments in lift-
ing cell geometryf38g.

Numerical simulations for the immiscible casef33g also
suggest possible singular behaviorsdroplet pinch-offd with
harder driving, or with different initial conditions, even if
surface tension is nonzerostypical immiscible cased. It is also
found that pinch-off would be favored when surface tension
effects are sufficiently weak. Indeed, it is quite well known

for immiscible flows that the addition of surface tension re-
movessregulatesd interfacial singularities. In this sense, for
the present miscible pinch-off case with harder drivingsor
higher Ped, andA near 1, but with very weak effective sur-
face tensionsKorteweg stressesd d=−5.0310−7, the detach-
ment of droplets could be somewhat expected. On this basis,
it is of interest to investigate more closely how Korteweg
stresses could influence the droplet detachment process.

In order to further clarify the effects of ersatz interfacial
tension for Korteweg stresses, simulations at largerd=−2.5
310−6 and −5.0310−6 are shown in Figs. 9 and 10, respec-
tively. It is evident that a higherd not only stabilizes the
interface, but also restrains the occurrence of droplet detach-
ment. From Fig. 9 we verify that initiallyst=1d the interface
presents just some small bumps, followed by the penetration
of a few inward swide and roundedd fingers st=2, 3d. In
addition, we see that finger pinch-off is significantly weak-
ened for d=−2.5310−6. No droplet detachments are ob-
served till t=4, when just two identifiable detached droplets
are generatedfsee also Fig. 9sddg. So it is evident that the
detachment process is considerably delayed by the action of
larger Korteweg stresses. On the other hand, from Fig. 10 we
observe that droplet detachment is totally prevented by suf-
ficiently larger values of Korteweg stressesd=−5.0310−6.
In addition, the droplet is fully recircularized aftert=6.
These findings provide an additional confirmation that
Korteweg stresses indeed mimic surface tension for miscible

FIG. 9. Concentration images for Pe=1.23104, A=0.905, andd=−2.5310−6 at t= sad1, sbd2, scd3, andsdd5.
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flows: the interface is stabilized and the occurrence of finger
pinch-off is suppressed. Finally, we point out that the pat-
terns depicted in Figs. 9 and 10 again show great resem-
blance to the corresponding immiscible onesf33g.

B. Recircularization and finger competition dynamics: A more
quantitative analysis

After the analysis of the most relevant morphological fea-
tures of the miscible displacement in time-dependent gap
cells, which were based on concentration imagessSec. III Ad,
we now present a more quantitative study of the patterns
obtained. As in immiscible situations, the magnitudes of the
fingering instabilities can be determined by the growth of a
characteristic quantity related to the perimeter of the inter-
face, the so-called mixing interfacial lengthL. However, un-
like the immiscible case in which a sharp interface separating
the fluids can be defined, the mixing region between miscible
fluids is not a clear boundary, but rather a diffuse layer. So,
strictly speaking no completely accurate interfacial length
can be measured. Nevertheless, in the region of significant
concentration gradient, the mixing length can be well repre-
sented asf24–26g

L =E
S

ÎS ]c

]x
D2

+ S ]c

]y
D2

dx dy, s17d

whereS is the entire computational domain. On the condition
of a stable circular immiscible interface, referred as the base

state herein, the time-dependent interfacial lengthLB due to
lifting can be obtained asLB=2p exps−t /2d. In general, the
interfacial length starts to increase once the fingering insta-
bility is triggered; therefore an earlier growth and higher
growth rate of interfacial length reflect a more unstable in-
terface.

The interfacial lengthsL for several values of Pe,A, andd
as well as the base state are shown in Fig. 11sad. For the
cases presenting vigorous fingering, such as Peù4.03103,
Aù0.762, anddø−5.0310−6, initially L increases sharply,
reaches a maximum value, and then drops abruptly. This be-
havior is attributed to the stabilizing effect caused by the
shrinkage of the interface. For the situations not involving
significant fingering, i.e., Pe=103 andA=0.762, the interfa-
cial lengths behave quite similarly to the base state during
the whole lifting process, presenting a nearly exponential
decay.

Moreover, by inspecting Fig. 11sad we notice that eventu-
ally all curves converge to the base state. Since the shrinkage
of the droplet leads to the decay of interfacial length even in
an unstable situation, the magnitude of the emerging finger-
ing patterns can be conveniently described by thenormalized
interfacial length, defined asLn=L /LB fsee Fig. 11sbdg. The
nice collapse of normalized interfacial length for Pe=103 and
A=0.762 not only confirms the stable situation as shown by
concentration images in Sec. III A, but also validates the
propriety of the representation of interfacial length by the
present approximation. It is interesting to notice that, except

FIG. 10. Concentration images for Pe=1.23104, A=0.905, andd=−5.0310−6 at t= sad1, sbd3, scd5, andsdd6.
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for the strongest Korteweg stresses case withd=−5.0
310−6, longer interfacial lengths are mainly observed for
larger PesPe=1.23104d. Also confirmed quantitatively is
the fact that more vigorous fingering occurs for higher Péclet
number Pe, larger viscosity contrastA, or weaker Korteweg
stressesd, as the corresponding curves forLn show more
significant deviation from the base state.

Although the concept of mixing interfacial length given
by Eq.s17d provides a good quantitative measurement of the
strength and complexity of fingering patterns, it is certainly
more reliable within the region with relatively strong con-
centration gradients. For the situation studied in this work,
significant dispersion occurs throughout the entire droplet at
late stages, when its area is small. Thus, Eq.s17d might not
be entirely appropriate for an accurate representation of the
interfacial length at very late stages of the lifting process. In
particular, it may lead to inaccuratesunderestimatedd values
of normalized interfacial lengths, such as that for later times
Ln,1, illustrated in Fig 11sbd.

Nevertheless, the measurements using Eq.s17d shown in
Fig. 11sbd give correct trends regarding the stabilizing effects
for different control parameters, and most importantly, pro-

vide a quantitative verification of the interesting droplet re-
circularization phenomenon discussed previously. Based on
the concept of interfacial lengths, the recircularization timetr
can be defined as the time for which the normalized interfa-
cial lengthLn converges to unity. By observing Fig. 11sbd we
conclude that longer recircularization timesswhich are asso-
ciated to more unstable interfacesd are obtained at higher
Péclet numbers, larger viscosity contrast, and weaker Ko-
rteweg stresses. The recircularization timestr for various
cases presented in this work are also plotted in Figs. 12sad
and 12sbd. In Fig. 12 it is interesting to notice thattr follows
a nearly linear relationship with the inverse of the Péclet
number 1/Pe, and with the absolute value of Korteweg pa-
rameterudu, while it only depends weakly on viscosity con-
trastAù0.726.

Another important interfacial behavior that can be studied
more quantitatively is the one related to different morpho-
logical interfacial features induced by higher Péclet number
or higher viscosity contrast. As described in more qualitative
terms in Sec. III A, a higher Pe leads to more fingering
around a nearly circular region, while higherA leads to en-
hanced fingering around noncircular internal regions, due to
stronger penetration of inward less viscous fingers. In order
to verify the accuracy of these different mechanisms more
quantitatively, the measurement of another auxiliary quantity
is proposed. The one-dimensional profile of averaged con-
centrationca across the width of the cellsy directiond can be
obtained asf25g

FIG. 11. Time evolution of interfacial length for various control
parameters:sad interfacial lengthsL and sbd normalized interfacial
lengthsLn.

FIG. 12. Recircularization timetr for sad various Pe, andsbd
variousd, Pe=4.03103, andA=0.762.
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casxd =E
0

4/3

csx,yddy. s18d

Various profiles of the averaged concentration are plotted in
Fig. 13. The initial profile appears in a semicircular shape as
shown in Fig. 13sad for the representative case, and shrinks
as time proceeds. At later times, the rising of interfacial fin-
gerings makes the profile fluctuate and deform. The nicely
semicircular profile is no longer preserved. While a higher
Pe=1.23104 mainly leads to a larger number of fluctuated
waves as shown in Fig. 13sbd, more significant stretching and
larger amplitudes are resulted by a stronger viscosity contrast
A=0.905 in Fig. 13scd. The stretching of averaged profile
provides an additional possible measurement to describe the
behavior of the fingering patterns. To conserve mass or area
in the present cases, stronger inward penetrations of the less
viscous fingers in general induce more significant outward
growth of the more viscous ones. As a result of such a pro-
cess, the stretching of the averaged profile is expected to
increase more significantly for stronger length variability of
inward fingers. On the other hand, fingering around an ap-
proximately circular area affects this stretching weakly. In
this sense, a quantity defined as diameter of gyrationDg,
taken as the distance between the points at whichca=0.01,
could be used to probe in a more quantitative way the differ-

ent morphological behaviors induced by larger Pe and larger
A. Again, on the condition of a stable immiscible circular
interface, the base state diameter of gyrationDgB

can be ob-
tained, and the correspondingnormalizeddiameter of gyra-
tion defined asDgn

=Dg/DgB
.

Figure 14 depicts the time evolution of the normalized
diameter of gyrationDgn

for the cases presented in Fig. 11.
The growth behavior for the completely stable case with
Pe=103 andA=0.762 is mainly due to the significant diffu-
sion. The strong diffusive effects also explain the larger di-
ameters for Pe=103 andA=0.762 as compared to the mod-
erate fingering situations of Pe=4.03103, A=0.762 for d
=0, and Pe=1.23104, A=0.905 ford=−5.0310−6 at earlier
time periods. For situations showing evident fingering, larger
diameters of gyration are observed for higher Péclet num-
bers, higher viscosity contrast, or weaker Korteweg stresses.
Again, stabilizing effects induced by the shrinking droplet
area make the curves decay at later times, and strong disper-
sion induced by small droplets consequently results in under-
estimated values forDgn

. With the exception of the strongest
Korteweg stressesd=−5.0310−6, a more significant incre-
ment of gyration diameters always occurs for higher viscos-
ity contrastA=0.905. This last finding is in contrast with the
behavior displayed in Fig. 11, in which a more significant
interfacial length occurs at a higher Péclet numbersPe=1.2
3104d. These two opposing behaviors can be easily verified
by comparing the particular cases for Pe=1.23104, A
=0.762sd=0d, and Pe=4.03103, A=0.905sd=0d in Figs. 11
and 14. As shown in Fig. 11, while a longer interfacial length
is obtained when Pe=1.23104, A=0.762, its diameter of
gyrationssee Fig. 14d is smaller. This confirms quantitatively
the different fingering enhancement mechanisms discussed in
Sec. III A, in which more significant finger penetration or
competition is caused by a large viscosity contrast, while a
high Péclet number mainly leads to branching around a
nearly circular region.

IV. CONCLUSION

In this work, we have presented highly accurate numerical
simulations for miscible displacement in a time-dependent
gap Hele-Shaw cell. The interfacial instabilities have been

FIG. 13. Time evolution of averaged concentration profiles for
d=0 at sad Pe=4.03103 and A=0.762, sbd Pe=1.23104 and A
=0.762, andscd Pe=4.03103 andA=0.905.

FIG. 14. Time evolution of normalized diameters of gyration
Dgn

for various parameters.
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analyzed systematically both qualitatively and quantitatively.
Our analysis explicitly indicates how the relevant parameters
of the system, namely, the Péclet number Pe, the viscosity
contrastA, and the surface-tension-like Korteweg stressd
influence the morphology of the interfacial patterns.

First, we studied the situation in which Korteweg stresses
were absentsd=0d. In line with the conventional miscible
Saffman-Taylor problem with constant gap spacing, we find
that more vigorous fingering is observed at higher Péclet
number Pe and larger viscosity contrastA. In addition, we
have been able to identify the specific roles played by Pe and
A in determining different interfacial behaviors. On one
hand, we have found that higher Pe’s tend to trigger branch-
ing on a nearly circular region, leading to longer interfacial
lengths. On the other hand, significant finger competition and
finger penetration are caused by larger values ofA, a mor-
phological feature that can be quantitatively verified by the
calculation of larger values of diameter of gyration.

We have also found that the introduction of Korteweg
stresses significantly affects the behavior of the mixing inter-
face, introducing important stabilizing effects. In addition,
we have verified that if Korteweg stresses are taken into
account in a miscible case, the resulting patterns present
great resemblance with the structures obtained in the corre-
sponding immiscible situation. Moreover, smooth diffusive
effects for the flow with large Pe andA, and with smalld
lead to the formation of visually striking interfacial patterns
in which the outward fingers pinch off, producing a number
of detached droplets. The latter is not explicitly reported in
equivalent immiscible flows. Finally, we have shown that
such droplet detachment process can be prevented by the

action of stronger interfacial stresses. The consistent effects
of Korteweg stresses on a miscible interface, and of surface
tension on immiscible fluids provide an important and strong
evidence that the Korteweg stresses can be treated as an ef-
fective interfacial tension in systems including diffusing flu-
ids.

An interesting extension of the current work is the inves-
tigation of the influence of magnetic forces on the morpho-
logical properties of miscible interfaces in time-dependent
gap Hele-Shaw cells. This can be done by assuming that one
of the confined fluids is a magnetic fluidsferrofluidd f58g,
and a magnetic field is applied. It is well known that, de-
pending on the symmetry properties of the applied magnetic
field sperpendicularf21,22g, azimuthal f59,60g, and radial
f43gd it can either stabilize or destabilize the interface. In this
sense, an external magnetic field could be used to increase or
decrease the miscibility between the fluidsf27g. Of course, it
would be of interest to investigate how the magnetic
field couples to parameters like Pe,A, andd leading to non-
trivial nonlinear behaviors and even more complex interfa-
cial morphologies in miscible magnetic fluids. We plan to
perform a detailed study of the latter in a forthcoming paper
f61g.
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